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Two-dimensional lattice-gas models with attractive interactions and particle- 
conserving hopping dynamics under the influence of a very large external elec- 
tric field E along a principal axis are studied in the case of different ratios F 
between the jump rates in the field direction and perpendicular to it using dif- 
ferent transition probabilities. We investigate the dependence of the non- 
equilibrium steady-state properties on the transition mechanism. We find self- 
similarity with respect to (T, F) and a coexistence curve critical exponent which, 
for small F, seems independent of F. There is some evidence that this exponent 
might be halfway between the equilibrium mean field and Onsager's values. A 
crossover toward mean-field behavior for large F seems also identified. 

KEY WORDS: Stochastic lattice-gas model, stationary nonequilibrium 
states; superionic conductors; hopping dynamics. 

1. INTRODUCTION 

The lattice-gas version of the Ising model  with part icle-conserving hopping  
dynamics under  the influence of an external electric field can be used to 

model the so-called fast ionic or superionic conductors.  (1/ These are com- 

pounds  such as AgI characterized by a sharp break in the slope of their 
conduct ivi ty-versus- temperature  curve a round  some temperature  (which 
can be below the melt ing point,  depending  on the na ture  of the interac- 

tions), by relatively large ionic conductivit ies above that  temperature  (so 
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that they behave as solid electrolytes) (2) and, as a consequence, they have 
some promising technological applications. (3) In addition, this model is 
convenient for the analysis of "phase transitions" in stationary non- 
equilibrium states. (4) 

Recent studies by Katz, Lebowitz, and Spohn (4) in two dimensions 
and by Marro e t  al. (5~ in three dimensions have shown, for instance, that a 
very strong uniform electric field E along one of the principal axes of a lat- 
tice with periodic boundary conditions raises the critical temperature of the 
"ferromagnetic" (i.e., attractive interactions) Ising model, Tc(E)> To(0) 
(the shift in Tc is the opposite for "antiferromagnetic" (repulsive) 
interactions, (4) a case which will not be considered here). Moreover, there 
were some indications that this nonequilibrium phase transition might have 
a mean-field character. Namely, a numerical experiment for a three-dimen- 
sional system with n.n. interactions and large E (5/ revealed that the 
coexistence curve critical exponent is larger than the equilibrium value 
/3 ~ ~ (perhaps /3 = �89 If that is indeed the case, then this model would 
resemble the situation for a fluid under shear where it was predicted by 
Onuki and Kawasaki, (6) and consequently confirmed experimentally by 
Beysens and Gbadamassi, (7) that the corresponding gas-liquid phase trans- 
ition has mean-field behavior. 

The model has been analyzed by van Beijeren and Schulman (8) in the 
limit of an infinite ratio F between the jump rates in the field direction and 
perpendicular to it. This variation on the model is interesting for two 
reasons. First, because it produces some kind of a quasi one-dimensional 
conduction which resembles the situation in some materials such as hollan- 
dite where K + ions are compelled to move in channels (See Ref. 9,' and 
references therein). Second, because the critical exponents can in this case 
be found exactly, (s'~~ unlike the case F =  1 where our present information 
comes mainly from numerical experiments. (4'5) In fact, they find that 
exponents are mean-field. The critical temperature and other details 
strongly depend on the choice for F and on transition probabilities. (8'1~ 

It is the purpose of this paper to relate the phase transition found by 
Katz e t  al. (4) to the one described exactly by van Beijeren e t  al. (8'~~ We 
study the crossover toward a quasi-one-dimensional situation, and analyze 
qualitatively the influence of the system evolution mechanism on the nature 
of those nonequilibrium phase transitions. To this end we investigated 
various two-dimensional stochastic models (like the one mentioned before) 
in strong fields. We used several L x K (K=  L and K ~  L) lattices half filled 
with particles with different transition probabilities and ratios F for the 
microscopic mechanism of the evolution. We find how the latter influence 
the critical temperature, phase diagram, and other properties, and conclude 
some properties of the order-parameter exponent. We also find some 
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evidence that the critical behavior might be halfway between mean-field 
and Onsager equilibrium critical behavior, say/~-~ 0.23. This increases the 
interest in studying more thoroughly these and related models. 

2. D E S C R I P T I O N  OF M O D E L S  

The basic model of interest has already been described elsewhere. (4'5'8~ 
It consists in the present case of a L x L square lattice whose sites can be 
either occupied by a particle (ion), represented by ni = 1, or empty, ni = 0; 
i - -1 ,  2 ..... N = L  ~ denotes the lattice sites. The mean system density, 
P = N-1 ~ i  ni, is set p = �89 We also consider here quasi-one-dimensional 
L x K (K,~ L) lattices. 

A given initial configuration no={n i ,  i = l , 2  ..... N ( = L  2 or LK)}  
evolves according to a stochastic hopping dynamics with conserved p. 
Namely, particles hop to n.n. empty sites according to given transition 
probabilities implying the evolution of the system toward a "canonical" 
state at a prescribed temperature, in the sense that they satisfy an 
appropriate detailed balancing condition. We also assume the existence of 
an external uniform electric field s along one of the principal directions of 
the periodic lattice, 2. This induces a preferential hopping in the direction 2 
leading to a nonequilibrium steady state with a net steady current. This 
effect is enhanced here by considering a very strong field, E--, 0% so that 
the jumps in the direction - 2  are practically forbidden. In addition, we 
also enhance the jumps in the direction of the field as compared to those 
perpendicular to it, in the directions _+ r by performing in some cases the 
former with a frequency F times larger than the latter. 

The evolution of the system has been analyzed in the case of different 
jump mechanisms which basically correspond, repectively, to the usual 
Metropolis (' ') and Kawasaki {12) dynamics, in both cases, however, with the 
extra consideration of an external electric field and F>~ 1 and to the 
dynamics recently proposed by van Beijeren and Schulman m) in the case of 
finite F. These jump mechanisms are implemented in the computer as 
follows. 

Let us define the interaction energy as 

H({n}) = - 4 J 2  n~ni, J > 0  (1) 
n . n .  

In the case of the jump mechanism A, the evolution proceeds by choosing 
at random a site i and one of its n.n. sites j. The sampling for j is performed 
with a frequency F times larger in the _+2 directions than in the _+ j) direc- 
tions. When (i, j )  happen to be particle-particle or hole hole states, the 
program increases the number of "attempted jumps," but no move is per- 
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formed. Otherwise, the attempted jump results in an actual move of the 
particle from i to j (or vice versa) with probability 1 when A H  +_ E <<, 0 and 
with probability e x p [ -  (AH+_ E) / k sT]  when AH+_ E >  O. Here A H  is the 
change in the energy (1) produced by the jump, and the s igns+hold,  
respectively, when it is attempted in the directions <-2 (note that E =  0 for 
jumps along _ ~). This procedure can be seen to satisfy detailed balance 
locally. (4) The unit of time for the evolution ( M C  step) is the number of 
attempted jumps divided by N. 

Note that for F =  oo only jumps in the _+2 directions would occur so 
that the system can then be considered as a collection of Ising chains along 
2, whose particles cannot hop between chains, although they interact when 
located at n.n. positions. The fact that the known solution for an Ising 
chain compels one to expect that the suppression of the interactions 
between neighboring chains would make To(E)= 0 indicates the interest to 
analyze different jump procedures. 

The above mechanism, which is a straightforward generalization of the 
Metropolis transitions mechanism, (11) was also implemented in a few cases 
in a slightly different way, which shall be termed in the following as 
mechanism A': A pair of n.n. sites (i, ix) is selected at random where ix 
represents a n.n. position of site i in the + 2  or - 2  directions. The jump is 
performed (with probability 1) when the status at (i, i j  happens to be par- 
ticle-hole and ix points in the + 2 direction; otherwise the attempt produces 
no move. This is repeated until one actually performs a given number F' of 
actual jumps. Then new sites (i, iy), where iy indicates the n.n. position of 
site i in the + )~ or - r directions, are selected at random until a particle- 
hole pair is found; the particle and the hole are then interchanged with 
probability 1 if AH<~O or with probability e x p ( - A H / k B T )  otherwise. 
After these attempts in the direction perpendicular to the field, the cycle is 
started again and repeated as necessary. Each cycle requires F >> F' random 
selections of n.n. sites wich contribute to the Monte Carlo time; F is 
defined as before. Note that the main difference between mechanisms A and 
A' is that the time intervals between jumps in A are random whereas they 
are fixed in A'. 

In order to study a really different transition mechanism with some 
physical relevance we also consider case A, but with transition probabilities 
given by [1 + e x p ( - ( A H + _ E ) / k B T ) ]  1 where E = 0  for jumps in the _+~ 
directions. This, which generalizes the usual Kawasaki's procedure, (12) will 
be termed mechanism B. 

The transition mechanism considered by van Beijeren et al. (8,m) differs 
from those above. These authors make essentially the assumption 
(corresponding to F =  oo) that the particles along each line in the direction 
of the field "rapidly" return to a stationary condition between consecutive 
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jumps in the direction perpendicular to the field and consider a transition 
probability whose normalization is independent of H. One may in principle 
simulate directly such a condition by equilibrating, after a vertical jump, 
the two involved rows by randomly redistributing the given number of par- 
ticles in each of the two rows. Our algorithm for this, however, drives the 
system very slowly toward the stationary state. Instead we approached that 
condition by mechanism C which reproduces case A but with a transition 
probability which equals F for jumps in the direction of the field and 
equals e x p ( -  AH/2ke T), normalized to its maximum value, for jumps per- 
pendicular to the field. This allows the study of finite values of F and tends 
to the mechanism in Refs. (8, 10) in the limit F--* ~ .  

3. D I S C U S S I O N  OF RESULTS 

We describe here the results from a series of numerical experiments 
covering a broad range of temperatures which we measure in units of 
T/To; Tc=Tc(O)=8J/kB sinh ~(1) represents the Onsager (zero field, 
equilibrium) critical temperature. Most computations refer to 
L x L (L = 50, N = 2500) lattices; consequently we had to discard from the 
analysis of critical behavior the points very close to Tc(E, F) affected by 
finite size effects, as we discuss later on. These square lattices are studied in 
the case of mechanism A with F = 1, 5, 20, and 80, each for T/To ~- 0.8, 1.0, 
1.1, 1.2, 1.3, 1.4, and 1.5 (corresponding, respectively, to 16J/keT=2.203, 
1.763, 1.602, 1.469, 1.356, 1.259, and 1.175), and in the case of mechanism 
A' with F ' =  80 (requiring typically F > 4 0 0 )  for several temperatures. In 
addition, we studied the influence of the transition mechanism on the 
stationary state by evolving L x K(L= 10,000, K =  2, N=20,000) lattices 
via the jump mechanisms A, B, and C, the temperature ranging from 
T/T~ = 0.05 to T/To = 5. 

Periodic boundary conditions are always assumed in order to 
minimize finite size effects and produce a steady current in the direction of 
the field. The field is always assumed effectively infinitely strong in the 
sense that no actual jumps in the - ~  direction occur; in the case where the 
value of the field appears explicitly in the transition probability, that was 
accomplished by putting E =  15ksT except at very low temperatures where 
E = 75kB T ( T/Tc <~ 0.5) or E = 125 kB T ( T/T~ -- 0.05 ) was required. 

Given that we are only interested in the steady-state properties, the 
initial configuration no for each run is chosen in such a way that the CPU 
computer time is minimized and one obtains the most reliable results com- 
patible with the other conditions in our computations; e.g., we compared 
and averaged in some cases results coming from two different runs started 
at "infinite temperature" (random no) and at a temperature below T, the 
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characteristic one for that experiment, and we frequently used con- 
figurations obtained in previous runs. In any case, the system was allowed 
to evolve long enough (typically between 105 and 106 MC steps), until we 
were reasonably convinced that a stationary state had been reached, and 
we made about 150 measurements of the magnitudes of interest along an 
additional evolution, until good Gaussian distributions were obtained. This 
is much more than the usual statistics required for equilibrium Monte 
Carlo computations. 

We first refer to the results for square L x L lattices and will describe 
the behavior of L x K ( K ~  L) lattices in Section 3(vii). 

(i) Configurations 

We have investigated the behavior with T, F, and transition 
mechanisms of the steady state. Below some critical temperature 
T c ( E , F ) > T c  the system always undergoes a phase transition by 
segregating into a dense fluid (particle-rich) phase and a vapor (particle- 
poor) phase. Unlike in thermal equilibrium, however, the fluid-vapor 
system is strongly anisotropic. Typical configurations are shown in Fig. 1; 
they are qualitatively similar for any value of F. 

While the system configurations are always striplike in the 2 direction, 
as was also reported in previous studies, (4,s) the temporal evolution of the 
system requires a comment. The system is seen to evolve first toward a 
state with several well-defined strips (Fig. la), the number of strips being 
apparently size-dependent; e.g., 50x 50 lattices half-filled with particles 
usually develop two strips, very early, as in Fig. la, which may last for 
100,000 MC steps or more, while we observe up to 15 strips during short 
runs in a 300 x 300 lattice. The two-strip states seen stable although the 
system presents rather large, probably "anomalous" fluctuations. Even- 
tually, typically well after 100,000 MC steps, the two strips come rather 
suddenly together to form one-strip states. In a few cases at the lowest tem- 
peratures this never happened during 300,000 MC steps or more, i.e., the 
two-strips state then persisted during our whole evolution, and we had to 
manipulate the system to create artificially one-strip configurations by 
moving together the existing strips. On the contrary, we never observed a 
one-strip state to split again into two strips. 

It seems clear that one-strip states are the only stable ones under the 
present stationary conditions, i.e., finite F, n.n. interactions, and finite size 
of the system, in the sense that multistrip states would always decay sooner 
or later during such computer simulations. It seems to follow from the 
work by van Beijeren et al., (8"1~ however, that the relaxation time of mul- 
tistrip stationary states diverges in the case F ~  o% weak interactions per- 
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Fig. 1. Typical system configurations for a 50 x 50 lattice with periodic boundary conditions 
half-filled with particles under an "infinite" field E directed along the horizontal direction. 
Two different symbols are used in order to emphasize the interfaces shape and the clustering 
in the system: the crosses represent particles surrounded by particles at all the n.n. positions, 
while the pluses represent particles having at least one n.n. hole. (a) A two-strip configuration 
during the evolution of the system for F =  5 and T 0.8To(0 ) below To(E, F). (b) A one-strip, 
stationary configuration for the same system as in (a). (c) A one-strip configuration for F -  20 
and T =  T~(0) below To(E, F). (d) A configuration for F =  1 and T=  1.5Tc(0) above Tc(K F) 
during the final stationary evolution. 

pendicular to the field, and infinite system size. Our observations above 
thus correspond to a crossover toward such a situation. We should also 
point out that the mean values reported in the following for the order 
parameter, energy, etc., which correspond to one-strip states, are within the 
statistical fluctuations of the corresponding values for the metastable, inter- 
mediate two-strip states and that the only quantitative differences between 
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Fig. 2. Number of rows along the direction of the field which contain p - 0, 1, 2,..., particles 
versus p. Because of symmetry only p ~< 25 = NI/2/2 is shown. The symbols are as follows: 
F =  1 (asteriks), 5 (circles), 20 (crosses), 80 (pluses), and 400 (triangles). (a) Different cases 
above To(E, F) showing approximately a similar behavior; they correspond to the states 
( F =  1, T =  1.4To(0)), ( F = 5 ,  1.3To), and ( F = 2 0 ,  1.2To). (b) Same as in (a) for the cases 
( F = 5 ,  1.1Tc), ( F = 2 0 ,  To), and (F=400 ,  0.STc), below Tc(E, F). (c) On the contrary, dif- 
ferent values of F at the same temperature, T=0.STc(0) in all cases, lead to very different 
states. 
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Fig. 2 (continued) 

449 

them seem to concern the fluctuations which are larger for two-strip inter- 
mediate states. 

The final, one-strip system configurations can also be analyzed by 
looking at the graphs of Fig. 2, where we have plotted, for selected values 
of T and F, the number of rows along the ~ direction which contain 
p = O, 1, 2,..., L/2 particles versus p. These graphs reveal that one may com- 
pare, for instance, the following (T/7~,/")states: (1.1, 5), (1.0, 20), and 
(0.8, 400), so that there is a kind of self-similarity in the steady state. This is 
confirmed by noting the clear differences shown by Fig. 2(c) between states 
at the same temperature, e.g. (0.8, 1), (0.8, 5), and (0.8, 20). 

(ii) S t r u c t u r e  F u n c t i o n  

More quantitative information follows from the analysis of the struc- 
ture function which is defined as 

S T f ( k ) = N  -1 ~ lei~~n(T)J 2 (2) 
~ ~  N 

where k runs over the first Brillouin zone. This is indeed highly 
anisotropic; see Table I showing some representative values of ST.r(kx, ky) 
near k = 0 where one may again distinguish the situation above To(E, F) 
from the one below it, apart from finite size effects which tend to obscure 
the situation very near To(E, F). It also seems that the structure function 
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Table I. 

Vall6s and Marro 

Representat ive Values of the Ensemble Average of the Function 
Sr , r (kx ,  kv) a 

0 1 2 3 4 5 

0 920 0.2 99 0.2 34 0 
0.2 0.2 0.2 0.2 0.2 0.2 1 
0.1 0.2 0.2 0.2 0.2 0.2 2 
0.1 0.1 0.1 0.2 0.2 0.2 3 
0.1 0.1 0.1 0.1 0.1 0.2 4 
0.1 0.1 0.1 0.1 0.1 0.1 

(a) 

0 ! 2 3 4 5 

0 704 1.6 70 1.5 23 0 
0.5 0.4 0.4 0.4 0.5 0.5 1 
0.3 0.4 0.3 0.4 0.4 0.4 2 
0.3 0.4 0.4 0.3 0.4 - -  3 
0.3 0.3 0.3 0.3 - -  - -  4 
0.3 0.3 0.4 - -  - -  

(b) 

0 1 2 3 4 5 

0 367 4.1 17 3.7 12 0 
0.7 0.8 0.8 0.7 0.6 0.7 1 
0.7 0.6 0.8 0.7 0.6 0.7 2 
0.7 0.6 0.7 0.8 0.8 0.7 3 
0.6 0.7 0.6 0.7 0.6 0.7 4 

(c) 

0 1 2 3 4 

0 2 4 4 4 
1.6 2.0 3.3 3.7 5.2 
1.3 1.3 1.3 2.1 2.3 
1.0 1.0 1.2 1.5 1.7 
0.9 0.9 1.0 1.2 1.4 

(d) 

0 1 2 3 

0 45 11 1 7 
1.1 1.0 1.2 1.3 1.2 
1.1 0.9 1.0 0.9 1.0 
1.0 0.9 0.8 0.9 1.0 
0.9 1.1 0.9 0.8 0.9 

(e) 

0 1 2 3 4 

0 90 30 24 6 
0.8 0.9 0.9 1.0 0.8 
0.8 0.9 0.8 1.0 0.8 
0.8 0.8 0.7 1.0 0.9 
0.9 0.8 0.7 0.9 0.7 

(f) 

a Near k = 0, where the structure is more pronounced. The horizontal entries represent times 
the factor (50/2n)ky (i.e., the direction perpendicular to the field) and the vertical entries 
represent times the factor (50/2n) kx- Cases (a), (b), and (c) are all for T =  0.ST c and, respec- 
tively, for F =  1, 20, and 400. Case (d) is for F =  1 and T =  1.5To(0). Case (e) is for F = 2 0  
and T=I.2Tc(0),  where finite size effects seem important. Case (f) is for F~_400 and 
T =  0.95T~(0). 

p a r a l l e l  t o  t h e  f ie ld  is, e x c e p t  fo r  ky = 0, p r a c t i c a l l y  i n d e p e n d e n t  o f  k,  t h i s  

b e i n g  p e r h a p s  m o r e  e v i d e n t  t h e  g r e a t e r  F is ( t h u s  r e c o v e r i n g  t h e  c o n d i t i o n  

d i s c u s s e d  b y  v a n  B e i j e r e n  e t  al. (s'l~ fo r  F ~  o0).  

(iii) O r d e r  P a r a m e t e r  

T h e  n a t u r a l  o r d e r  p a r a m e t e r  fo r  t h e  p h a s e  t r a n s i t i o n  c a n  b e  d e f i n e d  
as  (5) 

m = ( ( M 2 x )  - ( M ~ ) )  1/2 (3 )  
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where { ) denotes the ensemble average and 

1 1)] 2 {4) 

M ;  = ~ T ~  2 ~2 ( 2 n ~ y -  1) ( 5 )  
Y 

This is a measure of the density difference between fluid and vapor phases; 
at infinite temperature is { M  1) = ( M ~ ) ,  which becomes zero for N--, oo 
and m = 0  while in the limit of zero temperature (M~ 2) --, 1, { M ~ )  ~ 0 ,  
and m ~ 1. The variation of m 2 with T and F is depicted in Fig. 3. This 
shows a clear change of Tc(E, F) with F which in the limit E ~ oo can be 
estimated, together with the rest of the evidence in this paper, as 
To(o% 1)~- 1.3 To (which confirms the value by Katz et a/., (4) 
Tc(oo, 5) -~ 1.2 Tc and Tc(oc, 20) _ 1.1 To. Fig. 3 also seems to indicate that 
there is a change in the derivative 8m/c?T when comparing, for instance, 
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Fig. 3. The order parameter defined in Eqs. (3)-(5) (note that we are actually plotting m 2 
for convenience) versus T/Tc(O) for F =  1, 5, 20, 80, and ~400, respectively, from top to bot- 
tom (same symbols as in Fig. 2) in the case of squared 50 x 50 lattices. The dashed lines are 
only a guide to the eye; the dotted lines represent finite size effects; the solid line is the result 
F -~  oc in Ref. 10. The inset shows the same data against T/To(F) assuming T c ( F ~ 2 0  ) as 
given by Table II and To(80)= 1.03To, T~(400), 1.02Tc, T ~ ( ~ ) =  1.02T~. The standard errors 
of the means imply error bars of the same height as the symbols used for F~< 80 and larger by 
a factor 1.3 for F-~400.  
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F =  1 with F = 4 0 0  (but not between the cases F =  1 and 5. The inter- 
pretation of our data for F =  80 and F ' =  80 (F>400) ,  which are also 
shown in Fig. 3, is more difficult than for the rest; we come to this point 
later on. 

( iv)  Currents 

The values for To(or, F) can be estimated by analyzing the change 
with T of bulk quantities with singularities at the critical temperature. One 
of them is the average current caused by the external field which probably 
presents smaller finite size effects severely affecting the estimation of 
To(E, F). Moreover the average current, which is defined as the number of 
actual jumps performed in a given direction during the stationary evolution 
divided by its duration (in MC steps), behaves rather smoothly as a con- 
sequence of the averaging processes (over time and over all the particle- 
hole bonds parallel to the given direction) it includes. The current along 
the field direction, J~(F, T), is shown in Fig. 4 as a function of T and F. As 

1 -Jx (T)  / i x  (co) - c o n s t o  
I 
I 

0, s 

I 
I 
I 

I , I , I , t 
06o , 8 1 1,2 1.4 

T / T  c (p )  
Fig. 4. Average saturation current divided by the corresponding value at infinite tem- 
perature versus T/To(F) where Tc(F ) is given in Table I[. Same symbols as in Fig. 2. For 
comparison we also included the values by Katz  eta/. (4) corresponding to F =  1 and to a 
smaller lattice, 30 x 30 (and poorer statistics); these are represented by small open circles. The 
solid line is a guide to the eye. The dashed curve suggests roughly the expected cusp at To(F) 
which is here rounded off. Note that/~ < �89 is suggested by the curvature shown by the data; a 
mean-field behavior would result in a line Jx cc c o n s t - ( T o -  T). In order to emphasize that  
all the data for F < 2 0  follow a similar behavior, we plot Jx(T)/Jx(OO)-c(I') where 
c(F= 1)= 0, c(F= 5 ) =  0.02, and c ( F =  2 0 ) =  0.07. The data  for F~> 80 seems to deviate from 
that behavior. Error bars here are always smaller than  the height of the symbols used. 
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in the cases F =  1 (4,5) and F--* oo (See Ref. 8) J~ at intermediate values of/~ 
increases with T, and one may relate To(F)  with a sudden break of the 
slope. The mean-field behavior found for F--, oo implies that J~ is linear 
with T near To(F).  This is approximately the case in Fig. 4; note, however, 
that most of the data reveal a curvature for T <  To(F) perhaps suggesting 
deviations from mean-field behavior. 

(v) Energy 

The behavior of the energy along directions ~ and Y, measured as the 
number of particle-hole bonds per lattice site, ex and ey, respectively, is 
shown in Fig. 5. 

More interesting are the truncated n.n. correlations defined as the 
ensemble average of 

gx = 1 - [ e x ( T ) / e x ( o o ) ]  - M ~  ex(oo) = �89 (6) 

and 
gy = 1 - [ e y ( T ) / e y ( o o ) ]  ey(OO) = �89 (7) 

These are plotted in Fig. 6 as a function of T for different values of F. The 
truncation by the square of the average density in each row reveals impor- 

0.25 
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j:D.l -x-t 
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O / Q u / / % / "  

~ 9 / 
/ / 

�9  * 
/ .  '~/Q)/" / 

j I "  / % / "  
/ %  /"  ~ X 

i I ~ 1 r I 

06~ ~ 8 1 1.2 

T/T~ (P)  
Fig. 5. The system energy parallel to the field (ex oc Jx) and perpendicular to the field (ey), 
both measured as the number  of particle-hole bonds per lattice site, versus T/Tc(F) (To(F) 
from Table II) for F =  1 (asterisks) and F =  5 (circles). Note that this behavior is very similar 
to that in Fig. 4. The data for F~> 20 (not shown) follow a similar behavior except for dis- 
placements along the vertical axis. Error bars here are similar to those in Fig. 3. 
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\ "~. ,y 

g• / ~x 

. 6  - . 8  1 1 ,2  1 ,4  

T / T  c ( ~ )  
Fig. 6. Truncated nearest-neighbor correlation functions in directions parallel (g.~) and per- 
pendicular (gy) to the field versus T/Tc(F) (To(F) from Table II and To(F= 80) = 1.03To). 
Same symbols as in Fig. 2. The dashed lines guide the eye. Note the similar behavior between 
g~, and m in Fig. 3. 

tant differences for the two principal directions: along ~ there is short-range 
order below Tc(F) while this is suppressed along 2 because the field stirs 
the rows. One should expect this stirring to act more effectively with 
increasing F and this is in fact supported by the data in Fig. 6. Note  also 
that, as expected, the correlation along )~ at a given temperature increases 
with decreasing F. 

(vi) C r i t i c a l  B e h a v i o r  

Our data for the order parameter  seem accurate enough to allow a 
quantitative analysis of critical behavior, e.g. the corresponding dis- 
tributions are very close to good Gaussians, and the critical, asymptotic 
region "T--* To" starts far below To, in two dimensions. Concerning the lat- 
ter one should notice that mean-field formulas and Onsager's solution may 
lead, respectively, to /~ = �89 and/3 = 1 when making the usual log-log plots 
including a "critical" region as wide as 0.8 ~< T/Tc ~< 1 (even wider in the 
case of mean-field behavior). As a consequence, we assumed that the data 
points shown in Fig. 3, excluding the ones affected by finite size effects 
(these are easily recognized by a comparison with previous MC data and 
by making plots such as the one in the inset of Fig. 3), belong to the 
critical region in this case. We then made plots of l nm versus 
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In[I-T/To(F)],  trying to obtain the corresponding critical exponent, 
which we denote by/3. Given that our estimations for To(F) in the previous 
sections are not accurate enough for this purpose, we allowed ourselves to 
slightly modify T~(F) around the values quoted in Section (iii), looking for 
straight lines in the log-log plots. It became clear in this way that our data 
are not consistent with the equilibrium value/3 = ~ not, apparently, with the 
mean-field value/3 = �89 when one tries to demonstrate one of these values, 
the data systematically deviates from a linear behavior, both in the low and 
high temperature region within the considered range, and the values 
needed for To(F) are manifestly inconsistent with the values reported 
above. Instead we can fit our data to the formula 

re(T; F)=B(F)[I - T/T~(F)] ~ (8) 

with/3 = 0.23 • 0.02, roughly independent of F, and Tc(F ) consistent with 
Figs. 3-6 and the rest of the data. Table II lists the values obtained for 
Tc(F) and B(F) in this way; Fig. 7 depicts some graphical evidence. 

The data for F~> 80 can also be forced to follow the same behavior, i.e. 
/3~0.23, by assuming Tc(OO, 80)-~(1.00_+0.03)Tc, c (80 )= -0 .050  and 
To(oo, F' = 80) - (0.94 • 0.01) To, c(F' = 80) = -0.155. While these values 
follow the trend shown by F~< 20, they are inconsistent with a monotonous 
decrease of the function Tc(F) and, simultaneously, with the exact result for 
F--, oo in the case of the mechanism considered in Ref. (10) (see Fig. 3). 
One may give several interpretations of this fact. First, the system evolution 
proceeded in the computer very slowly for F > 2 0  so that our data for 
F~> 80 are scarce and affected by larger error bars than the rest (see figure 
caption for Fig. 3). We think, however, that those data are still significant, 
so that this cannot be the only cause for the mentioned inconsistency. One 

Table II. Values for the Critical Temperature Tc(E, F) 
and for the Parameter c (F )  ~ 

r T~(E, C)/T~(O) c(r) 

1 1.33 • 0.02 0.142 0.226 
5 1.18 • 0.02 0.147 0.226 

20 1.05 _+ 0.01 0.114 0.225 

Gives the corresponding thermodynamic amplitude as B(F)= exp(c), needed to obtain the 
scaling behavior with F shown by Fig. 7. The individual values for the critical exponent in 
Eq. (8) are also given; they are always around f l -0 .23 .  The error bars reported state the 
limits for which the data follow a linear behavior as in Fig. 7 with/? = 0.23 + 0.02 and values 
for To(E, F) roughly consistent with the rest of the evidence in this paper. 
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Fig. 7. Scaled log-log plot of the order parameter versus temperature (same data and sym- 
bols as in Fig. 3; the data affected there by finite size effects are not included here, however) in 
order to show that/~ ~ 0.23. The values for c(F) and To(E, F) used here are given in Table II 
(also T~(80)=Tc, c (80)=-0 .050,  and Tc(400)=0.94Tc, c(400)=-0.155) .  The slopes �89 
(mean field) and �89 (Onsager's) are also shown. The values in Ref. (10) for F ~  oo lay on the 
Hine. 

may also note that the cases F =  80 and F >  400 were run, respectively, 
with mechanisms A and A', which basically differ from these studied by van 
Beijeren et al. We already know that the microscopic mechanism of 
evolution may influence the details of the phase transition (next section and 
Refs. (8, 10); for instance, preliminary data for a three-dimensional model 
system (14) seems to indicate that Tc(oo, F =  1) is very different, say, for 
mechanism A than for mechanism C. Nevertheless, qualitative differences 
should probably tend to disappear as F ~ oo, so that again this is unlikely 
to produce by itself that apparent disagreement between theory and 
experiment. We thus believe that the most credible interpretation of this 
fact is that our data for F>~ 80 (and perhaps also the one for F =  20) are 
showing up a crossover from /~-~0.23 toward /3=�89 the mean-field 
behavior demonstrated for F---, oo. As a matter of fact, F ~> 80 is indeed a 
very large value of F in our 50 x 50 lattices and this interpretation seems 
also confirmed, for instance, by the situation in Figs. 3 and 6. Namely, the 
data for F =  1, 5 in those figures can be mapped onto a single curve, 
without having to scale the amplitudes (see Table II), by just scaling the 
temperature; the case F = 2 0  is ambiguous, and F>~80 clearly deviates 
from that curve. 
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(vii) Rectangular Lattices 

More information on the steady states of interest can be obtained by 
considering rectangular lattices L x K. For  instance, one should probably 
expect a well-defined nonequilibrium phase transition in quasi-one-dimen- 
sional lattices K,~ L for large L in the case of mean-field behavior. Also, 
these lattices may seem convenient in principle to study differences in the 
stationary state of the system caused by the transitions mechanism. 

Thus we have analyzed the system L = 10,000 and K =  2 over a broad 
temperature range (from T/Tc = 0.05 to 5) in the case of the three trans- 
itions mechanisms, A, B, and C, described in Section 2. An "infinite field" 
acts in the direction of the largest dimension and periodic boundary con- 
ditions are assumed; the lattice is always half-filled with particles. In 
addition to the order parameter m (3)-(5), the current along the field, and 
the energies ex and ey, we have monitored now the following quantities 

m ' =  (26 - ] ) 1 / 2  (9) 

where 

1 6 = Z Z  (nxl--nx2) 2 (10) 
x 

and nxy = 0, 1, and 

p* = n(1) -  l In( l )  - n(O) - n(2)] (11) 

where n(p) represents the number of columns (perpendicular to the field) 
having p particles; p = 0, 1 or 2 for the present model. A simple reasoning 
reveals that m' and p* may vary between 1 and 0 when T = 0  and T ~  0% 
respectively, for the kind of order one may expect, while the behavior of m 
is perhaps more unpredictable in this quasi-one-dimensional case. 

The corresponding behaviors with temperature are shown by Figs. 8 
and 9 when F =  1 and F =  20. The resulting picture is rather simple: It 
seems that the sharp transition observed when K ~ L  is now absent for 
K,~ L, and that the data can be interpreted as revealing a "diffuse" phase 
transition with a broad changeover region A To such that A To would go to 
zero as K ~ L  (for large enough values of L). The data for m' and ey, 
which are not shown in the figures, present a behavior similar to that for 
p* in Fig. 8. 

When performing these computations we soon realized that, as expec- 
ted, the system evolves extremely slowly at low temperatures, e.g. for T <  1, 
especially in the case of model C; as a consequence the data are then affec- 
ted by large error bars. Otherwise we found no measurable differences with 

822/43/3-4-5 
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Fig. 8. The quantity p*, as defined in Eq. (11), versus temperature (in units of the Onsager 
critical temperature for the square lattice) for L x K lattices, L = 10,000 and K -  2. Asterisks 
correspond to model A, circles to model B, and crosses to model C. The cases F =  I and 
F =  20 are shown. The quantities m' and ey present a behavior qualitatively similar to the one 
shown by p*. The inset shows the behavior of m, as defined in Eqs. (3)-(5), versus tem- 
perature. 
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The energy along the field direction versus temperature for L x K lattices. Same sym- 
bols as in Fig. 8. The inset shows the current along the field direction. 
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transitions mechanisms; it seems these will only appear within AT~ as 
K ~ L. It is also noticeable that we do not observe qualitative differences 
between the cases F =  1 and F = 2 0 ;  however, these differences will 
probably emerge as F ~  0o. 

4. C O N C L U S I O N S  

The lattice-gas version of the Ising model (two dimensions, square lat- 
tices, attractive interactions) with particle (ion) conserving (p = 1/2) hop- 
ping dynamics under the influence of a very large external electric field E 
along one of the principal axes is studied by MC methods in the case of dif- 
ferent ratios F, 1 ~< F>400 ,  between the jump rates in the field direction 
and perpendicular to it, using some straightforward generalizations of the 
Metropolis mechanism. In addition, we also considered rectangular lattices 
(L x K, K <  L), with the field along the largest dimension, evolving toward 
the nonequilibrium stationary state with different mechanisms, namely 
some variations of the transition mechanisms first proposed, respectively, 
by Metropolis, Kawasaki, and van Beijeren-Schulman with F =  1 and 20. 
These mechanisms satisfy locally detailed balance conditions. 

The nonequilibrium steady state of the system depends on transition 
mechanisms, value of F, and system shape. For K =  L, that is, for square 
lattices, there is a critical temperature To(F), which usually differs from the 
equilibrium one, such that for T <  To(F) the system orders in a very 
anisotropic phase. This is shown by the actual configurations of the system 
(Figs. 1), which are striplike parallel to the field, and more quantitatively 
by the structure function values (Table II). Tc(F) is also characterized by a 
sudden break in the slope of the ionic current versus the temperature curve 
(Fig. 4). 

States with several strips, the number of strips depending on the 
system size, may persist during the evolution below To(F) for very long 
times (measured in MC steps) but they seem to decay finally into one-strip 
stationary states for finite F. In any case, the quantitative differences 
between the metastable multistrip states and the stable, stationary one-strip 
states seem rather small; e.g., the differences are within statistical 
fluctuations. 2 

Many properties of the final steady state change monotonically with 
F, e.g., the critical temperature for the nonequilibrium phase transition, 
To(F), decreases with increasing F. The data for F~> 80 seem consistent 

2 One should probably notice the fact that the order parameter for two-strip states in the 
50 x 50 lattice leads to 8 = 0.3, instead of the value/3 = 0.23 we are reporting here for one- 
strip states, when the data is analyzed as described in Section 3(vi). 
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even with To(F) becoming smaller than the Onsager's equilibrium critical 
temperature. This, however, is in conflict with Tc(F ~ oo) > Tc and seems 
to indicate that our data for large F should be given an interpretation dif- 
fering from that for small F, say F < 2 0 ,  as we make precise later on. 

We also find self-similarity of the steady-state (T, F), as demonstrated 
in most figures throughout the paper. The most outstanding manifestation 
of this fact is contained in Fig. 7; that is, the order-parameter critical 
exponent is independent of F for small F. The data for F <  20 also seem to 
allow the conclusion that fi-~ 0.23; this is halfway between the Onsager's 
equilibrium critical behavior and the typical mean-field behavior, which 
seems to characterize the exact case F ~  oo. (8'1~ This result is also implied 
by the curvature shown by Fig. 4 below To(F), which suggests that the 
current Jx approaches To(F) as c o n s t - ( T ~ -  T) 2~ with �89 ~/3 ~ �89 Of course, 
more work on these and related models will be needed to make more 
precise the above conclusion and should this be the case, a good value of/3 
for "small" F. We are presently carrying out a finite-size scaling analysis 
with that aim. 

The data for F~> 80, on the other hand, is consistent with a crossover 
from the above behavior to the mean-field behavior shown by the case 
F ~  oo. (8'1~ It is noticeable, however, that the limit F ~  oo is reached very 
slowly in a computer simulation. For instance, the case F > 4 0 0  (U--80) ,  
where the particles in a row of 50 sites along the field direction should 
practically equilibrate (in the sense of van Beijeren and Schulman (8~ 
between two consecutive jumps perpendicular to the field, seems still "far" 
from the limiting case F ~  oo; this is supported, for instance, by Fig. 3 
(where the data point corresponding to the highest temperature for F'  = 80 
is probably affected by finite size effects.) We also had noticeable difficulties 
in generating good Monte Carlo data for large F due to the slow evolution 
of the system in the computer for F>~ 80. 

We also investigate the case of quasi-one-dimensional lattices, L x K, 
K ~ L .  The sharp phase transition found for K ~ L  is absent in that case 
and no measurable differences are observed for small F(F~<20) between 
models A, B, and C; this fact, as evidenced by Figs. 8 and 9, might suggest 
again that there is no mean-field behavior in the phase transition for small 
F when K ~ L. 
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